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Abstract 
Engineering design process has an evolutionary and 
iterative nature as design artifacts develop through 
series of changes before the final solution is achieved. 
Design is performed based on design requirements which 
are mainly specified as restrictions on the properties of 
the design artifact, and are considered to be design 
constraints.  

A common problem encountered during the design 
process is that of constraint evolution, which may involve 
the identification of new constraints and modification or 
omission of existing constraints for a number of reasons. 
These reasons would include changes in customer 
requirements, changes in the technology, change in the 
production cost or to improve the performance. As 
design is an evolutionary process where a solution is 
sought by trial and error, integrity constraints in 
engineering design will not remain fixed but will tend to 
evolve during the design process. This evolving nature of 
constraints has made the support for automatic integrity 
validation, non-trivial as it imposes number of key issues 
that need to be dealt with. 

We have been able to successfully address these issues 
with respect to the engineering design environment and 
we identify how one could meet the challenges through 
effective management of these evolving constraints for 
engineering designs. Thus the original design will 
continue to exist while supporting the creation of new 
design versions to meet the changes. 

 

1.0 BACKGROUND 
 

1.1 Version Management 
As a result of the iterative and evolutionary (tentative) 
nature of the engineering design process, design artifacts 
develop through a series of changes before the final 
solution is achieved. Each stage of the artifact evolution 
can be represented through versions and it has been 

identified that the version management is a crucial 
feature that should be supported in engineering design 
[13]. Version management allows derivation of a new 
design solution from an existing design solution thus 
saving designer’s time. For example consider that V1 is 
produced as the first solution for a bicycle frame design 
as depicted in figure 1. Although this would work, the 
designer may find out under evaluation that this design 
solution will not provide the stiffness required by the 
bicycle rider. To produce, a more stiffer road frame a 
new design solution denoted as version (V2) can be 
derived from V1 by changing the seat tube size and the 
material (see figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Bicycle Frame Versions 

 

1.2 Engineering Design Constraints 
In designing artifacts designers have to make sure that 
their design solutions, adhere to given sets of design 
constraints through an integrity validation process. To 
assist the designer in this task it is necessary to provide 
the designer with an integrity validation mechanism, 

Derivation 

V1 

seat_tube = 52 cm 
top_tube = 56 cm 
tube_diameter = 31.8 mm 
head_angle = 71 
chainstay = 25 cm 
material = “aluminium” 
--------------------- 

V2 

seat_tube = 42 cm 
top_tube = 56 cm 
tube_diameter = 31.8 mm 
head_angle = 71 
chainstay = 25 cm 
material = “steel” 
--------------------- 



which automatically checks design solutions (represented 
as object versions), for design data correctness and 
consistency. There are number of different constraint 
classification schemes in the literature with respect to the 
engineering design environment [15, 16, 19, 21]. 
However, we categorise constraints based on what aspect 
of the design artifact they are imposed on as depicted in 
figure 2. In our research we consider only the value-
based constraints relevant to physical and structural (i.e. 
formation features category) constraints that enforce the 
accuracy of the data values assigned to the corresponding 
attributes of the object.  

 

1.2.1 Physical Constraints 

To this end, we consider the following three value-based 
constraint classifications: 

(i)  Range Constraints (e.g. 35 cm ≤ frame_size ≤ 58 
cm) which check the validity of an attribute value 
specified by the designer by returning true if the 
value is within the specified range and false 
otherwise.  

(ii)  Enumeration Constraints (e.g. material = {steel, 
stainless steel, titanium, aluminium}) which may 
also return a boolean after validation. 

(iii) Relationship constraints are used to establish a 
physical relationship between two or more attributes 
that may belong to the same object. The validation 
of this constraint may either return a derived value or 
a boolean (e.g. in hub artefact the relationship 
between its spoke angle and spoke holes is given as 
SpokeAngle is  round (720 / SpokeHoles) . 

 

1.2.2 Structural Constraints  

Relationship constraints are also used to establish 
formation features of structural constraints (e.g. the 
formation features of the bicycle artefact with respect to 
frame and the wheel which may state that the frame size 
should be > 40 cm if the diameter of the wheel is > 60 
cm). 

 

1.2.3 Hard and Soft Constraints 

In the general design context, each constraint category 
can in turn be divided in to hard and soft constraints [10]. 
Hard constraints are restrictive and cannot be violated 
while soft constraints are not restrictive and can be 
violated if required. For example, the constraint specified 
on Seat tube (e.g. seat tube >52 cm and <68 cm) of the 
bicycle frame can be more restrictive and therefore be a 
hard constraint whilst the constraints specified on the 

frame material (material = {aluminium, steel}) can be 
violated and therefore be a soft constraint. 
2.0 Problem of Evolving Constraints 
A common problem encountered during the design 
process is that of constraint evolution, which may 
involve the identification of new constraints and 
modification or omission of existing constraints for a 
number of reasons. These reasons would include changes 
in customer requirements, changes in the technology, 
change in the production cost or the possible 
improvements to the performance. Therefore, it is not 
possible to predict in advance how frequently the 
constraints will change. As design is an evolutionary 
process where solution is sought by trial and error, it is 
necessary to recognise that integrity constraints in 
engineering applications will not remain fixed but will 
tend to evolve throughout the design process. We 
observed that this evolving nature of constraints has 
made the support for automatic integrity validation, non-
trivial as it imposes number of key issues that need to be 
dealt with. These issues have been identified as given in 
sections 2.1 to 2.5 [11, 12]:  

 

2.1 Designers as End-users 
The designers are not (expert) programmers and may 
only have a little idea about the inner workings of the 
application programme and the underlying database 
system. Hence a system that takes the cognisance that 
designer is the end user of the system through providing 
easy creation, modification and deactivation of 
constraints is required.  

 

2.2 Creating New Design Objects 
Changes in constraints may require the creation of new 
design solutions or new object versions, which satisfy 
new constraints. The system should be able to validate 
the consistency of the new version on explicit user 
request by automatically selecting the currently 
applicable set of constraints.  The violations should be 
reported to the designer through informative messages 
enabling him to correct them appropriately. This 
demands a more flexible environment, which 
incorporates the dynamic constraint modifications to the 
system for future constraint validations.  

 

2.3 Constraint Reusability 
It is unlikely that all of the constraints pertinent to an 
artifact will be changed in a modification. Most of the 
previous constraints imposed on an existing design 
solution (or a parent object version) are re-applicable to 



the new object version and will not require re-definition. 
This raises the importance of constraint reusability.  

2.4 Constraint Evolution History 
Even though a new set of constraints is currently 
applicable, it is necessary to recognise that the 
consistency of previous versions is still valid against the 
set of constraints imposed on them at their creation time. 
Moreover, as design is a trial an error process the 
designers may want the facility to move back to a 
previously applicable set of constraints if a particular line 
of constraint evolution does not work out. These issues 
illustrate the importance of maintaining a constraint 
evolution history (to keep track of constraint evolution) 
particularly against object versions and also of providing 
the ability to retrieve the set of constraints applicable to 
each version from the evolution history. 

 

2.5 Existing Object Validation 
There can be existing version(s) that may fully or very 
closely adhere with the new constraints (e.g. in the event 
of a constraint relaxation). If an existing design version 
can be successfully validated against the new set of 
constraints, the major advantage is that it may eliminate 
the derivation of a new design version. This requires the 
capability of validating the existing versions and 
reporting the outcome of the validation to the designer in 
the event of a constraint change.  

Although the main focus of any constraint management 
mechanism is the provision of automatic integrity 
validation, it is clear that more facilities will be required 
when evolving constraints are considered in an 
engineering design environment. The provision of these 
facilities cannot be achieved without a well-defined 
framework. 

 

3.0 CONSTRAINT MANAGEMENT 
MECHANISMS 

Three main mechanisms are used to manage constraints. 
They are through database schema using the relational or 
declarative approach, the class methods using object-
oriented approach and active rules.  

3.1 Static Approach 
One of the most widely used approaches for constraint 
handling is specifying and compiling constraints in the 
schema definition [6, 8]. This mechanism is known as the 
static approach in [9]. The defined constraints are 
enforced by the DBMS to ensure the database 
consistency [8]. This approach has been mainly 
addressed in relational and deductive databases. The 

static approach provides knowledge independence [4, 10] 
where knowledge or rules are managed independently 
from the application program. The benefits of knowledge 
independence are that there is a substantial reduction in 
the procedural code necessary to fulfil the application 
requirements since constraints are managed by the 
DBMS and not by the applications [4, 5]. However, the 
static approach, or declaring integrity constraints in a 
database schema/class in general, has the following 
shortcomings in relation to evolving constraints: 

(i) The designer (i.e. a non-programmer) requires to 
recompile and rewrite the existing schema to define 
a new schema to incorporate the constraint changes 
[2]. 

(ii) As the constraints are considered as meta data, 
applicable globally to all the objects of that class, it 
is not possible to have different objects in a 
particular class complying with different sets of 
constraints [14].  

(iii) Although this mechanism is suitable for some 
applications to ensure the consistency of the DB 
state it is not appropriate for engineering design 
applications as it prevents constraint modifications 
unless all the existing objects comply with the new 
constraints. It further prevents the deactivation of 
unnecessary constraints [2].  

(iv) The constraints declared in the schema are always 
enforced on the corresponding objects [2]. This 
approach may not be suitable for applications with 
soft constraints since the objects must always satisfy 
all the constraints defined in the schema.  

 

3.2 Object-Oriented Approach  
In Object-Oriented databases the normal practise is to 
code the database schema as a collection of classes using 
a programming language such as Java or C++. 
Constraints are coded in corresponding methods of these 
classes due to encapsulation [17, 22]. Although 
encapsulation is one of the most important characteristics 
of the object-oriented approach there are number of 
drawbacks associated with implementing integrity 
constraints within methods in class definitions. 

(i) It can be seen that the environment is rather rigid 
and inflexible. It is not possible to modify 
constraints without affecting the class definition.  

(ii) As explained in the static approach, it is totally 
unrealistic to expect that the designer would change 
the class definition to incorporate constraint changes.  

(iii) Checking constraint evolution is a difficult task as it 
involves scanning the methods in the corresponding 



class definition and furthermore, it is not easy to 
retrieve the set of constraints applicable to a 
particular version since constraints are scattered 
everywhere within class methods [7]. 

 

3.3 Active Rules 
Constraints represented as active rules avoid some 
disadvantages of the static approach such as 
schema/class evolution by separating constraint 
specification from the schema. This separation allows 
independent constraint evolution without affecting the 
schema/class definition [18]. However, this approach has 
the following shortcomings with respect to the issues 
outlined in sections 2.1 to 2.5. 

(i) The designer is expected to have a sound knowledge 
of a programming knowledge unless he is supported 
with a user-friendly interface to modify existing 
constraints. To our knowledge there is no real 
commercial product of this kind. It is unrealistic to 
expect that the designer will write and compile piece 
of codes relevant to the constraint changes. 

(ii) Given a particular version, it is not feasible to access 
the constraints imposed on it to denote the various 
consistency states. This limitation occurs for a  
number of reasons:   

(a) Constraints are scattered in different operations 
according to events.  

(b) Constraints defined as active rules get triggered 
for each object based on the event conditions. 
There is no real association between an object 
and the constraints applicable on it.  

(c) There are no proper means of maintaining the 
history of the constraint evolution. 

(iii) Active rules are procedural and in general it may be 
difficult for a layperson to understand them. 

Figure 3 summarises how these three mechanisms cater 
for the issues outlined in section 2. 

3.4 Constraint Management Mechanisms in 
Engineering Design Applications 

Some attention has been given in the literature to 
providing constraint management mechanisms in 
engineering design applications. These include 
approaches presented in [2] and [19] that take the 
evolutionary nature of the design constraints into 
consideration. In these approaches the flexibility to 
incorporate constraint evolution is achieved by treating 
constraints separately from the class definition. To this 
end Buchmann [2] present constraints as database objects 

and Ram [19] aggregate constraints into a separate class 
definition called constraint meta object. 

Constraints are associated with objects/instances of the 
class facilitating different objects of the same artifact to 
adhere with different constraints. However, a major 
drawback is that both approaches require the designer to 
manually associate the applicable constraints with the 
corresponding design objects. Particularly, the approach 
proposed by Ram [19] is extremely software oriented 
which requires the designer to change and compile 
programs written in C++ to capture new constraints and 
moreover to attach (plug) and detach (unplug) each 
constraint to and from the design object. In reality this is 
not possible when the designer is not a programmer 
making more hassles to the designer than the benefits. On 
the other hand, specifying constraints in non-executable 
form such as normal database objects as in [2] makes the 
integrity validation a difficult process from the 
application program’s point of view. The same 
disadvantage is applicable to [19] since the constraints 
defined in the constraint class in special syntax require to 
be interpreted by another program. Hence, the data 
validation itself will become rather cumbersome under 
both methods. Moreover, these mechanisms do not in 
fact address all the issues outlined in sections 2.1 to 2.5.  

 

4.0 THE PROPOSED FRAMEWORK 
In proposing our framework, we consider that embedding 
dynamic constraint information in a class definition 
clearly requires a redefinition of that class, whenever a 
change occurs. It is also necessary to support the features 
discussed in sections 2.1 to 2.5. Consequently, we 
propose our framework based on the concept of the 
Constraint Version Object (CVO). 

Each CVO contains or aggregates a set of integrity 
constraints that needs to be satisfied by the object version 
of a particular artifact, at some instant in time. For the 
bicycle frame artifact for example, the CVO may contain 
the currently applicable constraints for its frame size, 
tube diameter, material and seat_tube length. Maintaining 
CVOs provides the flexibility to capture changed 
constraints independently from the artifact class 
definitions. 

Constraint evolution is managed by producing new 
CVOs. Each artifact will have its own set of CVOs 
depending on how the constraints relevant to that artifact 
change. However, only one CVO per artifact is active at 
a time; this is known as the default CVO. The default 
CVO contains the currently active constraint set, and the 
last CVO created in the system will usually become the 
default CVO. CVOs govern the validity of design data in 
object versions. At the time of version creation, each new 
version is automatically coupled with the corresponding 



default CVO, for data validation. The default CVO may 
change with time as new CVOs are produced to reflect 
constraint evolution. Consequently, different versions of 
an artifact may be associated with different CVOs, each 
representing the default CVO current at the time of data 
validation.  

A naming scheme is needed to identify CVOs uniquely 
within the design environment. As each design artifact 
has its own set of CVOs, the naming scheme that is 
adopted here takes the form 
<objectnameCVO_number>, which represents a unique 
id for each CVO. The number is assigned sequentially, 
indicating that the CVO with the highest id number is 
created last for a given design artifact. The initial 
framework is depicted in figure 4a. As shown in the 
diagram the object versions (artifactversion1, 
artifactversion2 and artifactversion3) are instances of the 
same artifact class but have been validated under 
different CVOs (artifactCVO_1 and artifactCVO_2). 
Any number of object versions can be associated (or 
validated) with one CVO. It is important that each object 
version keeps track of the CVO relevant to its data 
validation as it enables tracking of the corresponding 
CVO for each object version later on. Since a CVO 
aggregates a set of constraints, retrieval of the constraints 
imposed on each object version is easily achieved 
through its corresponding CVO. In defining constraints 
within CVOs, each constraint should be given a name in 
addition to the constraint specification, to uniquely 
identify that constraint within the CVOs belong to the 
same artifact. A CVO may contain any combination of 
active constraints, of any category, e.g. range, 
enumeration and relationship constraints, which are in 
turn, can be either hard or soft.  

  

 

 

 

 

 

 

 

 

Figure 4a: Proposed Framework 

 
Creating New CVOs 
The necessity to create a new CVO may arise for the 
following reasons. 

(i)  A modification of existing constraints. For example 
the tube diameter of the bicycle frame artifact may 
change from (25mm ≤ tube_diameter ≤ 28 mm) to 
(29mm ≤ tube_diameter ≤ 31 mm). 

(ii)  Introduction of new constraints, e.g. the head angle 
of a bicycle frame which was not restricted before 
can be constrained to a particular set of values. 

(iii)  Omission of previously used constraints. For 
example moving on to free size bicycle frames 
means the frame size constraint will no longer be 
applicable. 

 (iv) Any combination of (i)-(iii).  

A new child CVO will be defined with: 

(i) refined constraints for the constraints that 
changed in the parent CVO.   

(ii) new constraints that did not exist in the parent 
CVO. 

(iii) a mechanism to indicate the omission of 
inactive constraints from the parent  CVO. 

(iv) any combination of (i), (ii) & (iii). 

Consequently, a new CVO contains only the changes to 
its parent CVO constraint set, and the means of referring 
to its parent for the unchanged constraints. Thus, when 
invoking constraints for data validation from the child 
CVO, there should be means in the child CVO to: 

- delegate constraints to the parent CVO  if  not  
declared within the child CVO. 

- override constraints in the parent CVO when  they 
are redefined in the child CVO. 

- omit constraints defined in the parent CVO when 
they are no longer be applicable. 

Since CVOs are objects, we consider that instance 
inheritance [23] with overriding and differential 
mechanisms is the means to best provide these features in 
CVOs. If a constraint is defined in a child CVO and the 
same constraint is defined in the parent CVO, then 
through the overriding mechanism the constraint of the 
parent CVO is not part of the child CVO. The differential 
mechanism allows the designer to be selective about 
what is inherited from the parent object and thus provides 
facilities to specify what should not be inherited from the 
parent object. Classical type inheritance differs from 
instance inheritance and does not cater for these 
requirements. For example in type inheritance there are 
problems with omitting and overriding constraints from 
the parent object in the child object [1]. It may further 
cause class evolution [14]. Within CVOs each constraint 
is defined as a rule where its head denotes the constraint 
name, and its body defines the constraint specification. A 

artifactversion1: VersionableArtifact 

Artifactversion2: VersionableArtifact 

Artifactversion3: VersionableArtifact 

Instance inheritance 
Validation 

Derivation 

artifactCVO_1

artifactCVO_2



child CVO only contains the refined constraints and 
inherits the unchanged ones from its parent as depicted in 
figure 4a.  

For example, the frame version (frameVersion1) is 
produced within the set of constraints frameCVO_1 
(figure 4b). However, to improve the comfort and to 
reduce the weight of the bicycle a new set of constraints 
(denoted by frameCVO_2) for seat tube, top tube, 
chainstay and tube diameter is agreed upon whilst 
keeping the constraints for head angle and the material 
unchanged. Due to inheritance the new CVO will only 
contain the constraints relevant to the changed 
constraints. A new version frameVersion2 is derived 
from frameVersion1 by changing the values accordingly 
to satisfy the new constraints. The designers may explore 
more versions under the current set of constraints. For 
example another version frameVersion3 can be derived 
from frameVersion2 within the constraints defined in 
frameCVO_2 either to improve the flexibility of the 
bicycle or to satisfy the rider’s requirements. 

 

5.0 ADVANTAGES TO THE DESIGNER 
The Object-Oriented paradigm (OOP) and thus the 
OODBMS (based on OOP) have been recognised as the 
most suitable technology for engineering data modelling, 
version management and storage [3]. 

We have chosen to implement our model in Java2. 
Objectivity has been chosen as the database system to 
add persistence to design object and versioning data since 
it is an object-oriented database with rich OO features. 
Prolog is well suited for defining CVOs since the 
integrity constraints can be handled in a straight forward 
manner as user defined predicates in Prolog. SICStus 
Prolog has the advantage that it provides SICStus objects 
with named collection of predicates with a facility for 
inheritance. Furthermore, the package called jasper 
provides a bi-directional interface between Java and 
SICStus [20]. 

 

5.1 Automatic Integrity Validation 
CVOs are used to check the consistency or adherence of 
a particular object version to a given set of design 
requirements, before making them persistent in the 
database. Accordingly in our framework, when a new 
object version is derived, data validation is invoked by 
explicit user request and is performed only on the new 
object version. On issue of the data validation command, 
the system is responsible for communicating with the 
corresponding default CVO and invoking the relevant 
constraints for validation, without the designer’s 
involvement.  In the event of a violation, the designer is 

provided with an informative messaging system which 
specifies details such as the violated constraints and the 
reasons for violations. 

In our opinion, in an engineering design environment 
designers should be given the facility to correct 
violations, in order to maintain the autonomy of 
participating disciplines, rather than automating the 
violation correction process. As a result, in our 
framework, the designer repairs the violation and the 
informative message system helps the designer to take 
the necessary actions to correct it. In relation to hard and 
soft constraints   

• violation of soft integrity constraints are merely 
flagged to warn the designer, while still allowing 
him to proceed. 

• violation of hard integrity constraints should warn 
the designer and at the same time prevent him from 
proceeding any further without correcting the 
violation.  

A new version is made persistent in the database, after 
successful validation of version data. Forming a new 
version after the successful completion of the validation 
process ensures the design integrity of object versions 
stored in the database. In our framework, two main 
situations are considered in which an object version data 
is validated. The first situation is at the time of a new 
version derivation. The second situation is the validation 
of existing versions against a newly created CVO.   

When a new CVO is created which reflects a new set of 
constraints, the existing object versions are checked 
against the design constraints within the newly created 
default CVO. Unlike the previous case, in this situation 
the system itself invokes the integrity validation process 
on creation of a new CVO. On receipt of the designer’s 
consent to proceed with the validation, it will carry out 
the validation task for the existing versions. A successful 
validation is feasible, for example if the child CVO 
contains constraints with relaxed or intersected domains. 
The designer will be notified of the outcome of the 
validation. In this way the designer finds out whether any 
existing versions comply with the new constraints. If 
there are no successful validations from the existing set 
of design versions, the system is capable of proposing to 
the designer those versions which are closest to 
successful validation.  

 

5.2 Easy Capturing of Constraints 
The designer should be able to capture constraints in a 
form-filling manner without requiring him to write or 
compile any program code. To this end, we consider 
providing the designer with a graphical interface that 



enables him to enter the constraint specifications and 
other required information into the system, e.g. new 
CVO name, parent CVO name, in a form-filling manner 
(see figure 5). From this information, the creation of a 
new executable CVO for a particular design artifact is 
made transparent to the designer. Syntactical errors that 
may occur through typing mistakes are avoided, by using 
option buttons and lists in the graphical interface, and 
thus enabling the designer to select the values/parameters 
relevant to the constraint specifications. Text fields are 
used to enter information such as the new CVO name and 
the values/parameters for range and enumeration 
constraint types. One constraint specification is entered at 
a time. On completion of each constraint specification, a 
button is pressed to carry out this conversion. This is 
transparent to the designer. Once all the constraints 
relevant to a CVO are specified, the designer only has to 
press a button to indicate CVO completion, upon which 
the executable form of the whole CVO is automatically 
written into the system.             

 

 
 
 
 
 
 
 
 
 
 

Figure 5: Capturing of constraint specifications 
 
5.3 Retrieval of Design Constraints 
Retrieval of design constraints is an important aspect 
from the designer’s point of view. This becomes a 
trouble-free task with CVOs, since each CVO is defined 
separately from the schema, and aggregates a set of 
constraints. To this end, the designer is easily able to 
retrieve constraints in the default CVO as the system 
maintains a record of it. Retrieval of any other CVO is 
possible as constraint evolution history is managed 
through CVOs and is performed by specifying the CVO 
name. As the system associates and keeps track of the 
CVO pertinent to each version, the CVO of any required 
version can be retrieved by specifying the version name. 
Upon selection of a particular version name, the CVO 
name associated with it is obtained to display the CVO 
details. However, constraints are defined in executable 
form as rules in CVOs and consequently, in displaying 
constraints they should be converted into a form close to 
natural language. The implementation of this feature can 
be performed using a parser, which reads and converts 
rules in each CVO to natural language.  

 

5.4 Moving back to Previous Stage of 
Constraint Evolution  

The designer performs this through changing the default 
CVO, if one constraint evolution path does not work out. 
The decision as to which CVO should be made the 
default should come from the group/project leader. The 
group/project leader should communicate this decision to 
the corresponding team members. The default object 
version is dependent on the default CVO. Therefore, 
when the current default CVO is changed, an object 
version belonging to the new default CVO should be set 
as the default. Consequently, the operation changing the 
default CVO is associated with the set default version 
operation. To support the designer in setting this new 
default object/configuration version, the system, through 
the version manager, selects and presents the designer 
with the list of version numbers that are eligible to be the 
default.  

                  

6.0 CONCLUSION 
In this paper we presented a framework to manage 
evolving design constraints in a computerised 
engineering design environment. We base our framework 
on the concept of CVOs which provide a flexible 
environment in managing evolving constraints. Our 
approach is novel since it both maintains the consistency 
of versions whilst catering for the issues that emerge as a 
result of constraint evolution within an engineering 
design environment. We believe that our proposed model 
is an important first step towards addressing the 
challenges of evolving constraint management and we 
consider that it can be adopted for any application with 
evolving constraints. 
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Figure 2: Constraint Categories 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4b: Illustration of the Proposed Framework using Frame Versions and the Frame CVOs 

frameCVO_1 

seat_tube = {42, 44, 46, 52} cm 
tube_diameter =  {25.4, 26.8, 27.2, 31.8} mm 
head_angle >65 and < 72 
chainstay = {25, 26} cm 
material = {aluminium, steel} 

frameCVO_2 

seat_tube >52 cm and <68 cm 
top_tube – ( if seat_tube < 60   then    
                        top_tube = seat_tube + 4) or  
                 ( if seat_tube between 60 and  68 then  
                       top_tube   = seat_tube - 3) 
chainstay = {40, 41, 42, 45} cm 
tube_diameter - if (material = “aluminium” then   
                      tube_diameter > 27.4 and <32)  or  
                if (material = “steel” then  
                          tube diameter > 24 and <27.4) 

frameVersion1: VersionableFrame

seat_tube = 52 cm 
top_tube = 56 cm 
tube_diameter = 31.8 mm 
head_angle = 71 
chainstay = 25 cm 
material = “aluminium” 
--------------------- 

FrameVersion2: VersionableFrame

seat_tube = 52 cm 
top_tube = 56 cm 
tube_diameter = 24.5 mm 
head_angle = 71 
chainstay = 42 cm 
material = “steel” 
--------------------- 

FrameVersion3: VersionableFrame

seat_tube = 61 cm 
top_tube = 58 cm 
tube_diameter = 24.5 mm 
head_angle = 71 
chainstay = 42 cm 
material = “steel” 
--------------------- 
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Issues Static Approach Object-Oriented 
Approach 

Active Rules 

Constraints impose on Globally on class level Globally on class level Globally on class level 

Flexibility in 
manipulating 
evolutionary constraints 

Not flexible  Not flexible Quite flexible as they are 
maintained separately from 
the schema. 

Designer’s ability to 
define/modify constraints 
 

Difficult since it requires 
programming knowledge 
and compilation of the 
program. 

Difficult since it requires 
programming knowledge 
and compilation of the 
program. 

Difficult since it requires 
programming knowledge 
and compilation of the 
program. 

Possibility for re-use of 
unchanged constraints 
while preventing their re-
definition 

Yes, if the existing schema 
is modified with new 
constraints. No, if a new 
schema is defined with new 
constraints. 

Yes, if the existing class is 
modified with new 
constraints. No, if a new 
class is defined with new 
constraints. 

Yes, as constraint 
modifications can be 
performed independently 
from the schema. 

Triggering validation on 
explicit user request 

No, as validation is 
normally invoked 
immediately and 
automatically by the 
DBMS. 

Depends on how the 
application program is 
designed. 

No, as constraints get 
triggered based on the 
event. 
 

Enforcing the currently 
active set of constraints 

Automatically enforced by 
the DBMS. 

Can be enforced 
automatically through the 
application program. 

Automatic, as the 
constraints get triggered 
based on the event. 

Messages to report 
violations enabling the 
designers to correct them 

Validation is associated 
with a transaction and the 
transaction is aborted in a 
violation cancelling all the 
work done so far. 

Can be provided through 
the application program. 

The rule may have an 
action part to repair 
violations without 
designer’s involvement. 

Validation of existing 
objects in constraint 
modifications 

Automatically takes place 
but inappropriate for CAD 
since it prevents 
modifications if previous 
objects in the DB do not 
adhere with the new 
constraints. 

Not available Not available 

Managing constraint 
evolution histories 

Histories can only be kept 
through producing new 
class definitions. 

Histories can only be kept 
through producing new 
class definitions. 

Histories can be kept 
through producing new 
class definitions. 
 

Ability to retrieve 
constraints applicable to 
a particular object 

Difficult as they are 
embedded in the schema. 

Difficult as the constraints 
are scattered in the class 
definition. 

Difficult as constraints are 
scattered in different 
operations. 

Moving back to a 
previous constraint set 

Possible through using the 
class/schema version with 
the required constraints. 

Possible through using the 
class version with the 
required constraints. 

Possible through using the 
class version with the 
required constraints. 

Association between 
constraint evolution and 
object evolution 

Not applicable. Not applicable. Not applicable. 

                
                              Figure 3: Comparison between the widely used constraint management approaches 
 


