
Management of Evolving Constraints in a Computerised
Engineering Design Environment

J.S. Goonetillake and G.N. Wikramanayake

 University of Colombo School of Computing

{jsg, gnw}@ucsc.cmb.ac.lk

Abstract
Engineering design process has an evolutionary and
iterative nature as design artifacts develop through
series of changes before the final solution is achieved.
Design is performed based on design requirements which
are mainly specified as restrictions on the properties of
the design artifact, and are considered to be design
constraints.

A common problem encountered during the design
process is that of constraint evolution, which may involve
the identification of new constraints and modification or
omission of existing constraints for a number of reasons.
These reasons would include changes in customer
requirements, changes in the technology, change in the
production cost or to improve the performance. As
design is an evolutionary process where a solution is
sought by trial and error, integrity constraints in
engineering design will not remain fixed but will tend to
evolve during the design process. This evolving nature of
constraints has made the support for automatic integrity
validation, non-trivial as it imposes number of key issues
that need to be dealt with.

We have been able to successfully address these issues
with respect to the engineering design environment and
we identify how one could meet the challenges through
effective management of these evolving constraints for
engineering designs. Thus the original design will
continue to exist while supporting the creation of new
design versions to meet the changes.

1.0 BACKGROUND

1.1 Version Management
As a result of the iterative and evolutionary (tentative)
nature of the engineering design process, design artifacts
develop through a series of changes before the final
solution is achieved. Each stage of the artifact evolution
can be represented through versions and it has been

identified that the version management is a crucial
feature that should be supported in engineering design
[13]. Version management allows derivation of a new
design solution from an existing design solution thus
saving designer’s time. For example consider that V1 is
produced as the first solution for a bicycle frame design
as depicted in figure 1. Although this would work, the
designer may find out under evaluation that this design
solution will not provide the stiffness required by the
bicycle rider. To produce, a more stiffer road frame a
new design solution denoted as version (V2) can be
derived from V1 by changing the seat tube size and the
material (see figure 1).

Figure 1: Bicycle Frame Versions

1.2 Engineering Design Constraints
In designing artifacts designers have to make sure that
their design solutions, adhere to given sets of design
constraints through an integrity validation process. To
assist the designer in this task it is necessary to provide
the designer with an integrity validation mechanism,

Derivation

V1

seat_tube = 52 cm
top_tube = 56 cm
tube_diameter = 31.8 mm
head_angle = 71
chainstay = 25 cm
material = “aluminium”

V2

seat_tube = 42 cm
top_tube = 56 cm
tube_diameter = 31.8 mm
head_angle = 71
chainstay = 25 cm
material = “steel”

which automatically checks design solutions (represented
as object versions), for design data correctness and
consistency. There are number of different constraint
classification schemes in the literature with respect to the
engineering design environment [15, 16, 19, 21].
However, we categorise constraints based on what aspect
of the design artifact they are imposed on as depicted in
figure 2. In our research we consider only the value-
based constraints relevant to physical and structural (i.e.
formation features category) constraints that enforce the
accuracy of the data values assigned to the corresponding
attributes of the object.

1.2.1 Physical Constraints

To this end, we consider the following three value-based
constraint classifications:

(i) Range Constraints (e.g. 35 cm ≤ frame_size ≤ 58
cm) which check the validity of an attribute value
specified by the designer by returning true if the
value is within the specified range and false
otherwise.

(ii) Enumeration Constraints (e.g. material = {steel,
stainless steel, titanium, aluminium}) which may
also return a boolean after validation.

(iii) Relationship constraints are used to establish a
physical relationship between two or more attributes
that may belong to the same object. The validation
of this constraint may either return a derived value or
a boolean (e.g. in hub artefact the relationship
between its spoke angle and spoke holes is given as
SpokeAngle is round (720 / SpokeHoles) .

1.2.2 Structural Constraints

Relationship constraints are also used to establish
formation features of structural constraints (e.g. the
formation features of the bicycle artefact with respect to
frame and the wheel which may state that the frame size
should be > 40 cm if the diameter of the wheel is > 60
cm).

1.2.3 Hard and Soft Constraints

In the general design context, each constraint category
can in turn be divided in to hard and soft constraints [10].
Hard constraints are restrictive and cannot be violated
while soft constraints are not restrictive and can be
violated if required. For example, the constraint specified
on Seat tube (e.g. seat tube >52 cm and <68 cm) of the
bicycle frame can be more restrictive and therefore be a
hard constraint whilst the constraints specified on the

frame material (material = {aluminium, steel}) can be
violated and therefore be a soft constraint.
2.0 Problem of Evolving Constraints
A common problem encountered during the design
process is that of constraint evolution, which may
involve the identification of new constraints and
modification or omission of existing constraints for a
number of reasons. These reasons would include changes
in customer requirements, changes in the technology,
change in the production cost or the possible
improvements to the performance. Therefore, it is not
possible to predict in advance how frequently the
constraints will change. As design is an evolutionary
process where solution is sought by trial and error, it is
necessary to recognise that integrity constraints in
engineering applications will not remain fixed but will
tend to evolve throughout the design process. We
observed that this evolving nature of constraints has
made the support for automatic integrity validation, non-
trivial as it imposes number of key issues that need to be
dealt with. These issues have been identified as given in
sections 2.1 to 2.5 [11, 12]:

2.1 Designers as End-users
The designers are not (expert) programmers and may
only have a little idea about the inner workings of the
application programme and the underlying database
system. Hence a system that takes the cognisance that
designer is the end user of the system through providing
easy creation, modification and deactivation of
constraints is required.

2.2 Creating New Design Objects
Changes in constraints may require the creation of new
design solutions or new object versions, which satisfy
new constraints. The system should be able to validate
the consistency of the new version on explicit user
request by automatically selecting the currently
applicable set of constraints. The violations should be
reported to the designer through informative messages
enabling him to correct them appropriately. This
demands a more flexible environment, which
incorporates the dynamic constraint modifications to the
system for future constraint validations.

2.3 Constraint Reusability
It is unlikely that all of the constraints pertinent to an
artifact will be changed in a modification. Most of the
previous constraints imposed on an existing design
solution (or a parent object version) are re-applicable to

the new object version and will not require re-definition.
This raises the importance of constraint reusability.

2.4 Constraint Evolution History
Even though a new set of constraints is currently
applicable, it is necessary to recognise that the
consistency of previous versions is still valid against the
set of constraints imposed on them at their creation time.
Moreover, as design is a trial an error process the
designers may want the facility to move back to a
previously applicable set of constraints if a particular line
of constraint evolution does not work out. These issues
illustrate the importance of maintaining a constraint
evolution history (to keep track of constraint evolution)
particularly against object versions and also of providing
the ability to retrieve the set of constraints applicable to
each version from the evolution history.

2.5 Existing Object Validation
There can be existing version(s) that may fully or very
closely adhere with the new constraints (e.g. in the event
of a constraint relaxation). If an existing design version
can be successfully validated against the new set of
constraints, the major advantage is that it may eliminate
the derivation of a new design version. This requires the
capability of validating the existing versions and
reporting the outcome of the validation to the designer in
the event of a constraint change.

Although the main focus of any constraint management
mechanism is the provision of automatic integrity
validation, it is clear that more facilities will be required
when evolving constraints are considered in an
engineering design environment. The provision of these
facilities cannot be achieved without a well-defined
framework.

3.0 CONSTRAINT MANAGEMENT
MECHANISMS

Three main mechanisms are used to manage constraints.
They are through database schema using the relational or
declarative approach, the class methods using object-
oriented approach and active rules.

3.1 Static Approach
One of the most widely used approaches for constraint
handling is specifying and compiling constraints in the
schema definition [6, 8]. This mechanism is known as the
static approach in [9]. The defined constraints are
enforced by the DBMS to ensure the database
consistency [8]. This approach has been mainly
addressed in relational and deductive databases. The

static approach provides knowledge independence [4, 10]
where knowledge or rules are managed independently
from the application program. The benefits of knowledge
independence are that there is a substantial reduction in
the procedural code necessary to fulfil the application
requirements since constraints are managed by the
DBMS and not by the applications [4, 5]. However, the
static approach, or declaring integrity constraints in a
database schema/class in general, has the following
shortcomings in relation to evolving constraints:

(i) The designer (i.e. a non-programmer) requires to
recompile and rewrite the existing schema to define
a new schema to incorporate the constraint changes
[2].

(ii) As the constraints are considered as meta data,
applicable globally to all the objects of that class, it
is not possible to have different objects in a
particular class complying with different sets of
constraints [14].

(iii) Although this mechanism is suitable for some
applications to ensure the consistency of the DB
state it is not appropriate for engineering design
applications as it prevents constraint modifications
unless all the existing objects comply with the new
constraints. It further prevents the deactivation of
unnecessary constraints [2].

(iv) The constraints declared in the schema are always
enforced on the corresponding objects [2]. This
approach may not be suitable for applications with
soft constraints since the objects must always satisfy
all the constraints defined in the schema.

3.2 Object-Oriented Approach
In Object-Oriented databases the normal practise is to
code the database schema as a collection of classes using
a programming language such as Java or C++.
Constraints are coded in corresponding methods of these
classes due to encapsulation [17, 22]. Although
encapsulation is one of the most important characteristics
of the object-oriented approach there are number of
drawbacks associated with implementing integrity
constraints within methods in class definitions.

(i) It can be seen that the environment is rather rigid
and inflexible. It is not possible to modify
constraints without affecting the class definition.

(ii) As explained in the static approach, it is totally
unrealistic to expect that the designer would change
the class definition to incorporate constraint changes.

(iii) Checking constraint evolution is a difficult task as it
involves scanning the methods in the corresponding

class definition and furthermore, it is not easy to
retrieve the set of constraints applicable to a
particular version since constraints are scattered
everywhere within class methods [7].

3.3 Active Rules
Constraints represented as active rules avoid some
disadvantages of the static approach such as
schema/class evolution by separating constraint
specification from the schema. This separation allows
independent constraint evolution without affecting the
schema/class definition [18]. However, this approach has
the following shortcomings with respect to the issues
outlined in sections 2.1 to 2.5.

(i) The designer is expected to have a sound knowledge
of a programming knowledge unless he is supported
with a user-friendly interface to modify existing
constraints. To our knowledge there is no real
commercial product of this kind. It is unrealistic to
expect that the designer will write and compile piece
of codes relevant to the constraint changes.

(ii) Given a particular version, it is not feasible to access
the constraints imposed on it to denote the various
consistency states. This limitation occurs for a
number of reasons:

(a) Constraints are scattered in different operations
according to events.

(b) Constraints defined as active rules get triggered
for each object based on the event conditions.
There is no real association between an object
and the constraints applicable on it.

(c) There are no proper means of maintaining the
history of the constraint evolution.

(iii) Active rules are procedural and in general it may be
difficult for a layperson to understand them.

Figure 3 summarises how these three mechanisms cater
for the issues outlined in section 2.

3.4 Constraint Management Mechanisms in
Engineering Design Applications

Some attention has been given in the literature to
providing constraint management mechanisms in
engineering design applications. These include
approaches presented in [2] and [19] that take the
evolutionary nature of the design constraints into
consideration. In these approaches the flexibility to
incorporate constraint evolution is achieved by treating
constraints separately from the class definition. To this
end Buchmann [2] present constraints as database objects

and Ram [19] aggregate constraints into a separate class
definition called constraint meta object.

Constraints are associated with objects/instances of the
class facilitating different objects of the same artifact to
adhere with different constraints. However, a major
drawback is that both approaches require the designer to
manually associate the applicable constraints with the
corresponding design objects. Particularly, the approach
proposed by Ram [19] is extremely software oriented
which requires the designer to change and compile
programs written in C++ to capture new constraints and
moreover to attach (plug) and detach (unplug) each
constraint to and from the design object. In reality this is
not possible when the designer is not a programmer
making more hassles to the designer than the benefits. On
the other hand, specifying constraints in non-executable
form such as normal database objects as in [2] makes the
integrity validation a difficult process from the
application program’s point of view. The same
disadvantage is applicable to [19] since the constraints
defined in the constraint class in special syntax require to
be interpreted by another program. Hence, the data
validation itself will become rather cumbersome under
both methods. Moreover, these mechanisms do not in
fact address all the issues outlined in sections 2.1 to 2.5.

4.0 THE PROPOSED FRAMEWORK
In proposing our framework, we consider that embedding
dynamic constraint information in a class definition
clearly requires a redefinition of that class, whenever a
change occurs. It is also necessary to support the features
discussed in sections 2.1 to 2.5. Consequently, we
propose our framework based on the concept of the
Constraint Version Object (CVO).

Each CVO contains or aggregates a set of integrity
constraints that needs to be satisfied by the object version
of a particular artifact, at some instant in time. For the
bicycle frame artifact for example, the CVO may contain
the currently applicable constraints for its frame size,
tube diameter, material and seat_tube length. Maintaining
CVOs provides the flexibility to capture changed
constraints independently from the artifact class
definitions.

Constraint evolution is managed by producing new
CVOs. Each artifact will have its own set of CVOs
depending on how the constraints relevant to that artifact
change. However, only one CVO per artifact is active at
a time; this is known as the default CVO. The default
CVO contains the currently active constraint set, and the
last CVO created in the system will usually become the
default CVO. CVOs govern the validity of design data in
object versions. At the time of version creation, each new
version is automatically coupled with the corresponding

default CVO, for data validation. The default CVO may
change with time as new CVOs are produced to reflect
constraint evolution. Consequently, different versions of
an artifact may be associated with different CVOs, each
representing the default CVO current at the time of data
validation.

A naming scheme is needed to identify CVOs uniquely
within the design environment. As each design artifact
has its own set of CVOs, the naming scheme that is
adopted here takes the form
<objectnameCVO_number>, which represents a unique
id for each CVO. The number is assigned sequentially,
indicating that the CVO with the highest id number is
created last for a given design artifact. The initial
framework is depicted in figure 4a. As shown in the
diagram the object versions (artifactversion1,
artifactversion2 and artifactversion3) are instances of the
same artifact class but have been validated under
different CVOs (artifactCVO_1 and artifactCVO_2).
Any number of object versions can be associated (or
validated) with one CVO. It is important that each object
version keeps track of the CVO relevant to its data
validation as it enables tracking of the corresponding
CVO for each object version later on. Since a CVO
aggregates a set of constraints, retrieval of the constraints
imposed on each object version is easily achieved
through its corresponding CVO. In defining constraints
within CVOs, each constraint should be given a name in
addition to the constraint specification, to uniquely
identify that constraint within the CVOs belong to the
same artifact. A CVO may contain any combination of
active constraints, of any category, e.g. range,
enumeration and relationship constraints, which are in
turn, can be either hard or soft.

Figure 4a: Proposed Framework

Creating New CVOs
The necessity to create a new CVO may arise for the
following reasons.

(i) A modification of existing constraints. For example
the tube diameter of the bicycle frame artifact may
change from (25mm ≤ tube_diameter ≤ 28 mm) to
(29mm ≤ tube_diameter ≤ 31 mm).

(ii) Introduction of new constraints, e.g. the head angle
of a bicycle frame which was not restricted before
can be constrained to a particular set of values.

(iii) Omission of previously used constraints. For
example moving on to free size bicycle frames
means the frame size constraint will no longer be
applicable.

 (iv) Any combination of (i)-(iii).

A new child CVO will be defined with:

(i) refined constraints for the constraints that
changed in the parent CVO.

(ii) new constraints that did not exist in the parent
CVO.

(iii) a mechanism to indicate the omission of
inactive constraints from the parent CVO.

(iv) any combination of (i), (ii) & (iii).

Consequently, a new CVO contains only the changes to
its parent CVO constraint set, and the means of referring
to its parent for the unchanged constraints. Thus, when
invoking constraints for data validation from the child
CVO, there should be means in the child CVO to:

- delegate constraints to the parent CVO if not
declared within the child CVO.

- override constraints in the parent CVO when they
are redefined in the child CVO.

- omit constraints defined in the parent CVO when
they are no longer be applicable.

Since CVOs are objects, we consider that instance
inheritance [23] with overriding and differential
mechanisms is the means to best provide these features in
CVOs. If a constraint is defined in a child CVO and the
same constraint is defined in the parent CVO, then
through the overriding mechanism the constraint of the
parent CVO is not part of the child CVO. The differential
mechanism allows the designer to be selective about
what is inherited from the parent object and thus provides
facilities to specify what should not be inherited from the
parent object. Classical type inheritance differs from
instance inheritance and does not cater for these
requirements. For example in type inheritance there are
problems with omitting and overriding constraints from
the parent object in the child object [1]. It may further
cause class evolution [14]. Within CVOs each constraint
is defined as a rule where its head denotes the constraint
name, and its body defines the constraint specification. A

artifactversion1: VersionableArtifact

Artifactversion2: VersionableArtifact

Artifactversion3: VersionableArtifact

Instance inheritance
Validation

Derivation

artifactCVO_1

artifactCVO_2

child CVO only contains the refined constraints and
inherits the unchanged ones from its parent as depicted in
figure 4a.

For example, the frame version (frameVersion1) is
produced within the set of constraints frameCVO_1
(figure 4b). However, to improve the comfort and to
reduce the weight of the bicycle a new set of constraints
(denoted by frameCVO_2) for seat tube, top tube,
chainstay and tube diameter is agreed upon whilst
keeping the constraints for head angle and the material
unchanged. Due to inheritance the new CVO will only
contain the constraints relevant to the changed
constraints. A new version frameVersion2 is derived
from frameVersion1 by changing the values accordingly
to satisfy the new constraints. The designers may explore
more versions under the current set of constraints. For
example another version frameVersion3 can be derived
from frameVersion2 within the constraints defined in
frameCVO_2 either to improve the flexibility of the
bicycle or to satisfy the rider’s requirements.

5.0 ADVANTAGES TO THE DESIGNER
The Object-Oriented paradigm (OOP) and thus the
OODBMS (based on OOP) have been recognised as the
most suitable technology for engineering data modelling,
version management and storage [3].

We have chosen to implement our model in Java2.
Objectivity has been chosen as the database system to
add persistence to design object and versioning data since
it is an object-oriented database with rich OO features.
Prolog is well suited for defining CVOs since the
integrity constraints can be handled in a straight forward
manner as user defined predicates in Prolog. SICStus
Prolog has the advantage that it provides SICStus objects
with named collection of predicates with a facility for
inheritance. Furthermore, the package called jasper
provides a bi-directional interface between Java and
SICStus [20].

5.1 Automatic Integrity Validation
CVOs are used to check the consistency or adherence of
a particular object version to a given set of design
requirements, before making them persistent in the
database. Accordingly in our framework, when a new
object version is derived, data validation is invoked by
explicit user request and is performed only on the new
object version. On issue of the data validation command,
the system is responsible for communicating with the
corresponding default CVO and invoking the relevant
constraints for validation, without the designer’s
involvement. In the event of a violation, the designer is

provided with an informative messaging system which
specifies details such as the violated constraints and the
reasons for violations.

In our opinion, in an engineering design environment
designers should be given the facility to correct
violations, in order to maintain the autonomy of
participating disciplines, rather than automating the
violation correction process. As a result, in our
framework, the designer repairs the violation and the
informative message system helps the designer to take
the necessary actions to correct it. In relation to hard and
soft constraints

• violation of soft integrity constraints are merely
flagged to warn the designer, while still allowing
him to proceed.

• violation of hard integrity constraints should warn
the designer and at the same time prevent him from
proceeding any further without correcting the
violation.

A new version is made persistent in the database, after
successful validation of version data. Forming a new
version after the successful completion of the validation
process ensures the design integrity of object versions
stored in the database. In our framework, two main
situations are considered in which an object version data
is validated. The first situation is at the time of a new
version derivation. The second situation is the validation
of existing versions against a newly created CVO.

When a new CVO is created which reflects a new set of
constraints, the existing object versions are checked
against the design constraints within the newly created
default CVO. Unlike the previous case, in this situation
the system itself invokes the integrity validation process
on creation of a new CVO. On receipt of the designer’s
consent to proceed with the validation, it will carry out
the validation task for the existing versions. A successful
validation is feasible, for example if the child CVO
contains constraints with relaxed or intersected domains.
The designer will be notified of the outcome of the
validation. In this way the designer finds out whether any
existing versions comply with the new constraints. If
there are no successful validations from the existing set
of design versions, the system is capable of proposing to
the designer those versions which are closest to
successful validation.

5.2 Easy Capturing of Constraints
The designer should be able to capture constraints in a
form-filling manner without requiring him to write or
compile any program code. To this end, we consider
providing the designer with a graphical interface that

enables him to enter the constraint specifications and
other required information into the system, e.g. new
CVO name, parent CVO name, in a form-filling manner
(see figure 5). From this information, the creation of a
new executable CVO for a particular design artifact is
made transparent to the designer. Syntactical errors that
may occur through typing mistakes are avoided, by using
option buttons and lists in the graphical interface, and
thus enabling the designer to select the values/parameters
relevant to the constraint specifications. Text fields are
used to enter information such as the new CVO name and
the values/parameters for range and enumeration
constraint types. One constraint specification is entered at
a time. On completion of each constraint specification, a
button is pressed to carry out this conversion. This is
transparent to the designer. Once all the constraints
relevant to a CVO are specified, the designer only has to
press a button to indicate CVO completion, upon which
the executable form of the whole CVO is automatically
written into the system.

Figure 5: Capturing of constraint specifications

5.3 Retrieval of Design Constraints
Retrieval of design constraints is an important aspect
from the designer’s point of view. This becomes a
trouble-free task with CVOs, since each CVO is defined
separately from the schema, and aggregates a set of
constraints. To this end, the designer is easily able to
retrieve constraints in the default CVO as the system
maintains a record of it. Retrieval of any other CVO is
possible as constraint evolution history is managed
through CVOs and is performed by specifying the CVO
name. As the system associates and keeps track of the
CVO pertinent to each version, the CVO of any required
version can be retrieved by specifying the version name.
Upon selection of a particular version name, the CVO
name associated with it is obtained to display the CVO
details. However, constraints are defined in executable
form as rules in CVOs and consequently, in displaying
constraints they should be converted into a form close to
natural language. The implementation of this feature can
be performed using a parser, which reads and converts
rules in each CVO to natural language.

5.4 Moving back to Previous Stage of
Constraint Evolution

The designer performs this through changing the default
CVO, if one constraint evolution path does not work out.
The decision as to which CVO should be made the
default should come from the group/project leader. The
group/project leader should communicate this decision to
the corresponding team members. The default object
version is dependent on the default CVO. Therefore,
when the current default CVO is changed, an object
version belonging to the new default CVO should be set
as the default. Consequently, the operation changing the
default CVO is associated with the set default version
operation. To support the designer in setting this new
default object/configuration version, the system, through
the version manager, selects and presents the designer
with the list of version numbers that are eligible to be the
default.

6.0 CONCLUSION
In this paper we presented a framework to manage
evolving design constraints in a computerised
engineering design environment. We base our framework
on the concept of CVOs which provide a flexible
environment in managing evolving constraints. Our
approach is novel since it both maintains the consistency
of versions whilst catering for the issues that emerge as a
result of constraint evolution within an engineering
design environment. We believe that our proposed model
is an important first step towards addressing the
challenges of evolving constraint management and we
consider that it can be adopted for any application with
evolving constraints.

7.0 ACKNOWLEDGEMENTS
The work presented here is based on the research done by
the first author at University of Wales Institute, Cardiff
(UWIC), UK under the supervision of T.W. Carnduff and
W.A. Gray. The research was funded by UWIC and
Asian Development Bank.

8.0 REFERENCES
1) Bassiliades, N. and Vlahavas, I., 1994, Modelling

Constraints with Exceptions in Object-Oriented
Databases, In proceedings of the 13th International
Conference on the Entity-Relationship Approach
(ER’94), Loucopoulos P. (eds.), Manchester, U.K,
189 – 204.

2) Buchmann, A.P., Carrera, R.S. and Vazquez-
Galindo, M.A., 1992,Handling Constraints and their
Exceptions: An Attached Constraint Handler for
Object-Oriented CAD Databases, On Object-
Oriented Database Systems, Dittrich K.R., Dayal U.
and Buchmann P. (eds.), Springer-Verlag, 65-83.

3) Carnduff, T.W., 1993, Supporting Engineering
Design with Object-Oriented Databases, PhD thesis,
Department of Computer Science, University of
Wales Cardiff, UK.

4) Ceri, S. and Fraternali, P., 1997, Database
Applications with Objects and Rules, Addison-
Wesley.

5) Ceri, S. and Ramarishnan, R., 1996, Rules in
Database Systems, ACM Computing Surveys, vol.
28 (1), 109-111.

6) Date, C.J., 1995, An Introduction to the Database
Systems, Addison-Wesley.

7) Diaz, O., Paton, N. and Gray, P., 1991, Rule
Management in Object Oriented Databases, A
Uniform Approach, 17th National Conference on
Very Large Databases (VLDB 91), Barcelona, 317-
326.

8) Elmasri, R. and Navathe, S., 1994, Fundamentals of
Database Systems, Second Edition, Addison-
Wesley.

9) Finin, T.W, Nicholas, C.K and Yesha, Y., 1992,
Consistency Checking in Object Oriented Databases:
Behavioral Approach, Information and Knowledge
Management, First International Conference
(CIKM’92), Baltimore, Maryland, USA, 53-68.

10) Friesen, O, Gauthier-Villars, G., Lefebvre, A. and
Vieille, L., 1994, Applications of Deductive Object-
Oriented Databases Using DEL, Applications of
Logic Databases, Ramakrishnan R. (eds.), Kluwer
Academic Publishers, 1-22.

11) Goonetillake, J.S., Carnduff, T.W. and Gray, W.A,
2001, Integrity Validation for Object Versions in a
Co-operative Design Environment, In Proceedings
of the 6th International Conference on Computer
Supported Cooperative Work in Design
(CSCWD’01), Shen, W., Lin, Z., Barthes, J. and
Kamel, M. (eds.), Ontario, IEEE, 89-94.

12) Goonetillake, J.S., Carnduff, T.W. and Gray, W.A.,
2002, An Integrity Constraint Management
Framework in Engineering Design, In the
International Journal of Computers in Industry, vol.
48(1), Elsevier Science.

13) Katz, R.H., 1990, Towards a Unifying Framework
for Version Modeling in Engineering Databases,
ACM Computing Surveys, vol. 22 (4), 376-408.

14) Katz, R.H. and Chang, E., 1992,Inheritance Issues in
Computer-Aided Design Databases, On Object-
Oriented Database Systems, Dittrich, K.R., Dayal,
U., Buchmann, A.P. (eds.), Springer-Verlag, 45-52.

15) Lin, J., Fox, M.S. and Bilgic, T., 1996, A
Requirement Ontology for Engineering Design, In
Proceedings of Advances in Concurrent Engineering
(CE’96), Sobolewski, M., Fox, M. (eds.), Toronto,
343-351.

16) Lin, J., Fox, M.S. and Bilgic, T., 1996, A
Requirement Ontology for Engineering Design,
Concurrent Engineering Research and Applications,
vol. 4(3), September, 279-291.

17) Meyer, B., 2000, Object-Oriented Software
Construction, Prentice Hall International Series in
Computer Science.

18) Pfieifer, A. and Wulf, V., 1997, Negotiating
Conflicts in Active Databases, In Proceedings of the
Concurrent Engineering: Research and Applications
Conference (CE97), Ganesan, S. and Prasad, B.
(eds.), 443-450.

19) Ram, D.J., Vivekananda, N., Rao, C.S. and Mohan,
N.K., 1997, Constraint Meta-Object: A New Object
Model for Distributed Collaborative Designing,
IEEE Transactions on Systems, Man and
Cybernetics, March, vol. 27(2), 208-220.

20) SICStus Prolog User’s Manual, 2000, Release 3.8.4,
Swedish Institute of Computer Science,Sweden.

21) Twari, S. and Franklin, H., 1994, Automated
Configuration Management in Concurrent
Engineering Projects, Concurrent Engineering
Research and Applications, vol. 2(3), 149-161.

22) Urban, S., Karadimce, P and Nannapaneni, R., 1992,
The Implementation and Evaluation of Integrity
Maintenance Rules in an Object-Oriented Database,
Proceedings of 8th International Conference on Data
Engineering, 565-572.

23) Wilkes, W., 1988, Instance Inheritance Mechanism
for OODBS, Object Oriented Database Systems
(OODBS 88), 274-279.

Figure 2: Constraint Categories

Figure 4b: Illustration of the Proposed Framework using Frame Versions and the Frame CVOs

frameCVO_1

seat_tube = {42, 44, 46, 52} cm
tube_diameter = {25.4, 26.8, 27.2, 31.8} mm
head_angle >65 and < 72
chainstay = {25, 26} cm
material = {aluminium, steel}

frameCVO_2

seat_tube >52 cm and <68 cm
top_tube – (if seat_tube < 60 then
 top_tube = seat_tube + 4) or
 (if seat_tube between 60 and 68 then
 top_tube = seat_tube - 3)
chainstay = {40, 41, 42, 45} cm
tube_diameter - if (material = “aluminium” then
 tube_diameter > 27.4 and <32) or
 if (material = “steel” then
 tube diameter > 24 and <27.4)

frameVersion1: VersionableFrame

seat_tube = 52 cm
top_tube = 56 cm
tube_diameter = 31.8 mm
head_angle = 71
chainstay = 25 cm
material = “aluminium”

FrameVersion2: VersionableFrame

seat_tube = 52 cm
top_tube = 56 cm
tube_diameter = 24.5 mm
head_angle = 71
chainstay = 42 cm
material = “steel”

FrameVersion3: VersionableFrame

seat_tube = 61 cm
top_tube = 58 cm
tube_diameter = 24.5 mm
head_angle = 71
chainstay = 42 cm
material = “steel”

Design
Constraint

Imposed on
artifact

properties

Imposed on
artifact

functionality

Imposed on
the design

process
artifact

Range

Enumeration

Relationship

Hard

Soft

Hard

Soft

Hard

Soft

Hard

Soft

Composition

Relationship

Physical

Structural

Formation
features

Issues Static Approach Object-Oriented
Approach

Active Rules

Constraints impose on Globally on class level Globally on class level Globally on class level

Flexibility in
manipulating
evolutionary constraints

Not flexible Not flexible Quite flexible as they are
maintained separately from
the schema.

Designer’s ability to
define/modify constraints

Difficult since it requires
programming knowledge
and compilation of the
program.

Difficult since it requires
programming knowledge
and compilation of the
program.

Difficult since it requires
programming knowledge
and compilation of the
program.

Possibility for re-use of
unchanged constraints
while preventing their re-
definition

Yes, if the existing schema
is modified with new
constraints. No, if a new
schema is defined with new
constraints.

Yes, if the existing class is
modified with new
constraints. No, if a new
class is defined with new
constraints.

Yes, as constraint
modifications can be
performed independently
from the schema.

Triggering validation on
explicit user request

No, as validation is
normally invoked
immediately and
automatically by the
DBMS.

Depends on how the
application program is
designed.

No, as constraints get
triggered based on the
event.

Enforcing the currently
active set of constraints

Automatically enforced by
the DBMS.

Can be enforced
automatically through the
application program.

Automatic, as the
constraints get triggered
based on the event.

Messages to report
violations enabling the
designers to correct them

Validation is associated
with a transaction and the
transaction is aborted in a
violation cancelling all the
work done so far.

Can be provided through
the application program.

The rule may have an
action part to repair
violations without
designer’s involvement.

Validation of existing
objects in constraint
modifications

Automatically takes place
but inappropriate for CAD
since it prevents
modifications if previous
objects in the DB do not
adhere with the new
constraints.

Not available Not available

Managing constraint
evolution histories

Histories can only be kept
through producing new
class definitions.

Histories can only be kept
through producing new
class definitions.

Histories can be kept
through producing new
class definitions.

Ability to retrieve
constraints applicable to
a particular object

Difficult as they are
embedded in the schema.

Difficult as the constraints
are scattered in the class
definition.

Difficult as constraints are
scattered in different
operations.

Moving back to a
previous constraint set

Possible through using the
class/schema version with
the required constraints.

Possible through using the
class version with the
required constraints.

Possible through using the
class version with the
required constraints.

Association between
constraint evolution and
object evolution

Not applicable. Not applicable. Not applicable.

 Figure 3: Comparison between the widely used constraint management approaches

